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Abstract 

 
Comprehensive understanding of the dynamics of the processes taking place in the testing specimen is available only by solving 
partial differential equations by finite element or finite differences method. However, even for small practical problems they appear 
to be of little effectiveness because of great computer resource (time and memory) usage. The situation can be improved by 
developing efficient algorithms of numerical modelling, based on a deeper analysis of the wave propagation phenomenon. As a result 
of the analysis, the finite element procedure in regular and free triangular finite element meshes was developed and adopted for the 
short wave propagation modelling during the ultrasonic measurement processes.  
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1. Introduction 

Ultrasonic non-destructive testing (NDT) is playing an 
increasingly important role for the reliability and safety of 
various components and systems. Ultrasonic waves are 
mechanical vibrations and therefore ultrasonic testing is 
especially suited to detection of elastic anomalies and measures 
of physical properties such as porosity, structure and elastic 
constants. Examples of the ultraconic NDT applications include 
mill components (rolls, shafts), jet engine components (turbine 
blanks and compressor rotors), airframe (frame section), rolling 
stock (axles, wheels) railroad track maintenance and many 
others. Ultrasonic testing instrumentation is basically electronic 
and indications may be obtained in real time. This characteristic 
permits rapid scanning with automatic positioning, plotting and 
alarming. 

The wide range of applications of the method creates the 
need of understanding the physics of the ultrasonic testing 
measurement processes by means of mathematical modelling 
and simulation of ultrasonic testing and measuremet processes. 
The distinguishing feature of ultrasonic measurements is that   
the object testing scheme has to be designed individually for 
different applications. The reflected amplitude is commonly 
used for the defect sizing in ultrasonic NDT. However very 
often there are many serious limitations, because the reflected 
ultrasonic pulse is subjected to variations due to coupling 
factors, reflectivity, angle or roughness of the defect and to 
interference effects. That is why a good model is always 
appreciated for the development of the testing procedures, for 
parametric studies or for the qualification of testing procedures. 

In this study we focus our attention on transient behaviour 
of the propagation of the typical ultrasonic pulse excited on the 
boundary of the environment. During the last decade a huge 
effort has been made to create the techniques and software able 
to solve realistic problems of ultrasonic wave propagation. The 
available publications on the problem present several different 
approaches.  The finite difference schemes able to associate 
different density and elastic parameters with each grid point, to 
take into account the boundaries between different materials and 
arbitrary geometrical shape of the region are referenced in [1]. 
The approach has been implemented as WAVE2000 
computational ultrasonics software able to solve 2D problems in 
powerful multiprocessor computing environments, as well as, in 

PC’s. The approach is based on efficient algorithms of step-by-
step computation of the structural displacements over all the 
structure and the time interval. 17 mesh points per shortest 
wavelength have been used, and the time step, ensuring the 
stability of the explicit time-marching scheme has been 
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longitudinal and shear elastic waves. The stability of the explicit 
numerical integration scheme being ensured, the accuracy 
requirements are usually satisfied as well - with 17 points per 
wavelength the maximum free vibration frequency represented 
by the structural model is usually much higher than the highest 
harmonic component of the wave of interest.  The combination 
of finite difference and finite element approach has been earlier 
described in [2].  
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The three-dimensional problems seem to be most realistic to 
approach by using the boundary integral equation techniques the 
transient formulations and implementation of which have been 
mentioned in [3] for acoustic and in [4] for elastic waves.  The 
space and time step requirements are similar as mentioned 
above for the finite difference approach, however, only surface 
of the body has to be discretized. Moreover, adaptive meshing 
can be employed by using refined meshing in the vicinity of 
geometrical irregularities. The best results can be expected by 
combining properly the finite element and boundary element 
approaches. The boundary integral method is very efficient for 
presenting the homogeneous regions, however, the sources of 
numerical instabilities, excessive oscillations of the solution and 
the measures to cope with them at present are not so clearly 
understood as for the finite element models. On the other hand, 
the zones containing non-homogeneous materials are much 
easier to represent by using finite element models.  

This work aims to analyse the finite element models for 
transient elastic wave propagation. In uniform finite element 
models containing identical rectangular elements the solution 
algorithms are very similar to those used in finite difference 
schemes as no structural matrices are necessary to assemble and 
calculation formulae for each grid point can be easily written. 
On the other hand, it is easy to couple such models with regions 
described by means of free finite element meshes, as well as, by 
boundary element models. It has been shown in [5], [6] that 
dispersion relations of uni-dimensional finite element models 
can be significantly improved by selecting appropriate form of 



 

the mass matrix. As a consequence, only 5-7 elements per 
wavelength instead of 17 often suffice to represent satisfactory 
the wave propagation law. As contraindication for using such an 
approach is a non-diagonal form of the mass matrix requiring to 
use iterative methods for solving the linear algebraic equation 
system at each time step. However in 2D and 3D cases more 
than 3 times increase of the element size result in considerable 
savings in computational time even if iteration at each time step 
is necessary. Estimation of the conventional methods’ 
effectiveness shows that neither of them is optimal for the 
ultrasonic NDT simulation. This paper is addressed to the 
development of the fast computer algorithms. As a consequence 
of the investigation the computer software for simulation of  2-
D plain stress, plain strain and axi-symmetric models has been 
created.  
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Fig.1 Scheme of the model division into rectangular and 
triangular zones. 
Note: ‘T’ corresponds to the triangular, ‘R’- to the rectangular 
zones. 

 

2. Model building strategy 

 
Ultrasonic wave propagation phenomenon has a set of the 

features distinguishing it from the other problems. Namely, the 
length of the propagating ultrasonic pulse is up to several 
hundred times smaller than the spatial dimensions of the body 
where vibrations take place in. In general defects, complicated 
boundary geometry (drilled holes, chamfers) are solitary 
instances in the structure. Regarding to the ultrasonic signal 
wavelength, the model could be treated as a composition of 
some large homogenous areas. They are being discretized by 
uniform quadrilateral finite element mesh which ensures 
solution precision and stability. The central difference time 
integration scheme in such meshes can be reduced to a recursive 
formula by which the displacement of each node is computed by 
using displacements of adjacent nodes. Global matrices of the 
structure do not have to be assembled since all finite elements 
are identical and solution for displacements is carried out by 
well known technique [9] at the element level. Since the 
homogenous areas dominate in the structure, significant savings 
of the computer resource are achieved. 

Boundary regions of the specimen are presented by the 
triangular finite element mesh. If the boundary region leaning to 
the quadrilateral finite element area has a triangular shape it is 
being meshed by uniform triangular mesh and recursive formula 
for the solution is implemented. If the boundary region is of 
arbitrary shape, it is meshed by a free triangular finite element 
mesh. For freely meshed domains we assemble the structural 
matrices, however, the size of freely meshed zones is usually 
small in comparison with large regularly meshed domains. As a 
result, the model is built in brick-wise manner of rectangular, 
triangular and polygonal zones (Fig.1).  

In practice, the division of the domain into rectangular, 
triangular and polygonal zones is performed as follows. The 
rough rectangular grid is put on the model. Area entirely 
overlapped by the grid cells is considered to be the rectangular 
finite element mesh zone. Areas partially overlapped by cells 

are considered to be triangular or polygonal zones and are  
meshed by free or regular triangle elements. If the cell happens 
to be outside of the model, it is an empty zone. Orientation of 
the rough grid usually is aligned to the vertices of the model in 
order to obtain the reasonable division into zones, i.e., minimum 
number of the triangular and maximum number of the 
rectangular zones. The spacing of the lines of the rough grid is 
variable in order to facilitate the division.  

Solution for displacements is calculated separately for each 
individual zone. The fact that zones are being processed 
separately permits to control model size during the computation. 
Actually, after the time instant of excitation the wave pulse 
propagates in the structure gradually with constant wave 
velocity (Fig.2).  

During the first stage of the pulse propagation the non-zero 
displacements are residing in a very small part of the model, 
while the rest of the model can be excluded from the 
calculation. The effective model size grows as the time goes on 
and is defined by the geometric shape of the wave frontline. 
Practically, the size of the active part of the model is controlled 
by supplying the “activity index” to all zones. Zones which are 
not reached by wave front are inactive and calculations are not 
performed upon them since all displacements are zero.  

If a zone of the computational model contains only small 
residual vibrations or isolated wave pulses of no practical 
interest, it is marked as inactive as well. We assume the 

displacement to be zero if it does not exceed 10  , 

where  - the maximum value of the displacement since 
the start of simulation. The technique also enables to eliminate 
the “numerical noise” the propagation velocity of which is at 
least two times greater as the speed of the longitudinal wave. 
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Another advantage gained in the model division into the 
different zones is the possibility to use individual mesh for each 
separate zone. This technique is efficient for simulation of 
waves in multi-material models. The materials of low wave 
propagation velocity provoke the unnecessarily refined mesh 
also in the high wave velocity materials. The use of the different 
meshes significantly reduces total number of the nodes of the 
model. The differently meshed zones are fitted within the model 
by interpolating the nodal displacements on the contact lines 
between the zones.  
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Fig.2 Wave front propagation in the structure: a) step number 80, b) step number 200 

∆t - the time integration step.  
From  (2) we obtain: 
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Time sub-stepping technique enabling to use different time 
integration steps in differently meshed zones presents another 
source for the efficiency increase of the program. It is under 
development now. 
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Displacement vector { }t tU +∆  is evaluated by using 
assembled zone's matrices, however in the case of the lumped 
mass matrix and regular finite element mesh formula (3) is 
actually applied for every individual node. Only the product 
[ ]{ }tK U for a node should be obtained on the element level and 
then assembled to the nodal force vector. Since all regular finite 
elements in the rectangular or triangular zones are identical, 
multiplication of the structural matrices by nodal displacement 
vectors can be presented by a simple and fast recursive formula.  

The discussed features of the ultrasonic pulse propagation 
make possible to develop an efficient algorithm of computation.  
The explicit time integration scheme in uniform finite element 
meshes is combined with the conventional finite element 
technique in free meshes. The use of efficient explicit time 
integration schemes combination of different size and time steps 
result in significant savings of computer resources and high 
performance. 

3. Application of the finite element method and 
algorithmic realization 

Calculation of the product corresponding to a rectangular finite 
element mesh node ij , see Fig. 3,  can be presented as 
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Elastic wave propagation analysis is performed by solving 

the structural dynamic equation  
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where [ ]M , , [ ]K [ ] [ ]MC α=   - the mass, stiffness and 

proportional damping matrices; { }F - the external load vector, 

, ,  - are the nodal displacement, velocity and 
acceleration vectors of the structure. 
{ }U { }U { }U

 

The time integration is being performed by means of the central 
difference integration scheme: 
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where are blocks of dimension 2x2 of the 
stiffness matrix of the quadrilateral element the local nodal 
numbers of which are being assigned from the bottom left corner 
in counter-clockwise direction. In the case of plain stress and 
plain strain models, the siffness matrices in the rectangular zone 
are identical, therefore in the formula (4) the superscripts are 
omitted. 
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Fig.3 Fragment of a quadrilateral finite element mesh 
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Fig.4 Fragment of a triangular finite element mesh 
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Fig. 5 Calculation of the traction forces on the different 
mesh contact line 

For the regular triangular finite element mesh formula (4 ) 
for the product  [ ]{ }tK U of the node ij (see Fig.4) reads as 
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where  - are the blocks of stiffness matrix of 
the triangular finite element. Here we have two different types 
of the stiffness matrices, because zone is meshed by the 
triangles, which have two different orientations. Since all the 
triangles have identical shape (the angles and vertices) they 
have to have the same stiffness in local references. The 
transformation from the local coordinates to the global ones 
result only in the position change of the matrix blocks. For the 
plain stress and plain strain models it sufficient to store only one 

domains requires considerably greate

[ ], , , 1,2,3le
stK l s t =

version of the element stiffness matrix.    

The calculation of the displacements for freely meshed 
r amounts of the 

computational resources, however, the number of nodes in such 
domains is usually small in comparison with the total number of 
nodes of the model. Vector { }t tU +∆  for freely-meshed  zones is 
evaluated  by means of form la (3) where structural matrices of  
zones are used.  

The derived recursive formulae (4) and (5) run correcly for 
the zone’s inner nodes. For 

u

the zone's corner and peripheral 
nodes, which at the same time are the peripheral nodes of the 
model, (4) and (5) have to be modified. The latter nodes do not 
have a full set of neighbouring nodes, therefore the stiffness 
matrix blocks, corresponding to the dummy nodes have to be 
nullified. When calculating displacements of the nodes, located 
on contact lines or corners, the displacements of the 
neighbouring zone nodes should be used. 

Since zones are processed individualy and only one per 
time, the sums of products [ ]{ }K U  are act

each interface line (skeleton in bold face, see Fig.1). During 
each time integration step op through the zones and 
assemble the products [ ]{ }t

 we lo
K U  for each interface node due to 

all neighboring zones. After that the zones are processed 
individualy.  

In multi-material structures, the different mesh density for 
each material 

ummulated for nodes 
on 

is employed. Generally, the positions of interface 
nodes of two differently meshed zones do not coincide. The 
procedure for the traction forces evaluation and the 
displacement increment calculation (second term in the formula 
(3)) are modified as follows. Before the time integration stage, 
the mass on the contact line is scaled to the smalest element size  
and stored as a nodal mass vector. The solution for 
displacements is being found for a smaler discretization step 
and then approximated for the rough mesh on the contact line. 
Once the diagonal matrices ]ˆ[M and ]~[M have been already 
formed, during each time step ]{ }tthe product [K U  of the rough 

Traction forces of the rough mesh are repla he equivalent 
distributed loading, which is transfered to the finer mesh nodes 
and converted to the corresponding traction forces (see Fig. 5).  

[ ]{ }K U

mesh have to be converted to the space step of the finer mesh. 
ced by t

The quantity t

nodem
 is a displacement increment, which 

is being found for a finer mesh. A Lagrangian interpolation is 



 

used in order to reconstruct the solution for rough finite element 
mesh from a soluti er mesh (see Fig. 6).  
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The third and fourth terms in (3) have not to be re-evaluated 
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Two dimensional axisymmetric fi lement els  require 
more storage, as the element mass matrix 

rough

M and stiffness matrix 

[ ]K  are f

solution. 
nite e mod

[ ]
dial positi

s nu
finit

elem
radi

e element mesh is being used, the model contains n different 
finite element matrices, where n denote mber of the finite 

ents in one-element width stripe from minimum to maximum 
us. Having saved the matrices of these finite elements the 

above discussed algorithm has been adopted for ultrasonic wave 
propagation problems in axisymmetric solids. In the case of the 
quadrilateral finite element mesh, finite element pairs [ ]1K , [ ]4K , 

and [ ]2K , [ ]3K  occupy different radial positions and finite 

element matrices [ ] [ ] [ ] [ ]1 2 3 4, , ,K K K K   are no long r ide ical  e

atrice

nt

s (Fig. 3). By using two types of the finite element m [ ]1K   

(here [ ] [ ]1 4K K= ), and [ ]2K  (here [ ] [ ]2 3K K= ) formula (4) is

ss

 
being adopted for model investigation. For 
triangular finite element mesh also two types of the stiffne  
matric

 the axisymmetric 

es [ ]1K  and [ ]3K  h  to be us la (5).  
It may be expected that axisymmetric models require huge 

amounts of storage for the stiffness and mass matrices of the 
elements. ever, age optimisation was made by em

ave ed in formu

unctions of the element ra on. If the uniform 

 How  stor ploying 

a stiffness and mass matrices reproduction procedure described 
below.  

For the axisymmetric models matrices [ ]M  and [ ]K  are 
linear functions of the finite element radial position. Element-
by-e
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Fig.6 Displacements reconstruction for rough mesh zone 

lement subtraction of two adjacent finit ement stiffness 
ss)  matrices provides us the variations of the stiffness 

(mass) matrix elements. Next we have to evaluate the matrices 
of the finite element, occupying the minimal radial position. 
Once we have the variations and the matrices of the finite 
element located at the minimal radius, the matrices of the rest 
finite elements can be easily computed. For the quadrilateral 
finite element the necessary ammounts of storge are determined 
by 10 2x2 blocks e

e el
(ma

stK    (instead of 4x4=16 blocks), and 7 

blocks of the directional coefficient storage. The total ammount 
of storage necessa or the stiffness matrices of the 
axisymmetric  model is 10x4+7x4=68 real numbers – slightly 
more than it is necessary for one qaudrilateral finite element 
(8x8=64). The numerical experiment demonstrates that the 
siffness marix reconstruction from the saved blocks and 
coefficients runs even faster than procedure when all necessarry 
stiffness matrices are formed and stored. The model simulation 
time was 281 and 262 minutes for the first and second case 
respectively. In both cases model was defined by 122672 nodes 
and 10000 time integration steps.    

4. Simulation results 

ry f

In this section the test results of the algorithm efficiency and 
x  solution are presented. 
The plexiglass-steel specimen presented in Fig. 1 was 

exa
eshes of the 

sam

an e ample of the problem

mined three times using different finite element meshes. In 
the first case all the model was meshed by the m

e space step sizes. Rectangular zones were discretized by 
the uniform qudrilateral finite elements, and triangle zones – by 
free triangular finite element mesh. The finite element size was 
predetermined by the longitudinal wave velocity in the 
plexiglass region and was equal to 0.00018 m. The  model size 
was 590,000 nodes. Simulation time in all cases was set to 
10,000 time steps. The simulation was carried out on a 1.7 MHz 
Pentium IV computer and took 1054 minutes. In the second 
trial, adaptive meshing was used. Finite element size for steel 
and plexiglass domains were set to  0.00034 m. and 0.00018 m. 
respectively. Rectangular and triangular zones were meshed by 
the uniform quadrilateral and free triangular finite element 
meshes respectively. Model was presented by 190,000 nodes, 
and simulation time was 321minutes. The last simulation was 
performed with the model entirely meshed by the regular 
qudrilateral and triangular finite element meshes. Finite element 
sizes were 0.00034 m. for steel, and 0.00018 m. for plexiglass 
regions. Simulation took 289 minutes. Simulation results are 
presented in the Fig.7. 



 

References 

 

[1] Shechter, R.S., Chaskelis, H.H., Mignona, R.B., Delsanto, 
P.P., Real-Time Parallel Computation and Visualization of 
Ultrasonic Pulses in Solids, Science, 265, 1188-1192. 

[2] Harumi, K. 'Computer simulation of ultrasonics in a solid', 
NDT International, 19,N.5, 315-332, (1986).  

[3] Bluck, M. J. and Walker,S.P., Analysis of three-
dimensional transient acoustic wave propagation using the 
boundary integral equation method, Int. J. Num. Meth. 
Eng., 39, 1419-1431, (1996). 

[4] Han, S. and Ichikawa, Y., Numerical modelling for 
scattering of waves in three dimensional cracked material, 
Int. J. Num. Meth. Eng., 38, 4081-4100, (1995). 

[5] Barauskas, R. and Daniulaitis, V., Modelling techniques 
for ultrasonic wave propagation in Solids, Ultragarsas, 
N1(29),(1998). 

[6] Daniulaitis, V. and  Barauskas, R., Modelling techniques 

p
r
r
o

 

C

m
r
d
s
p
T
t
a
c
t
a

1054

321 289

0

200

400

600

800

1000

1200

Model type

Model A
Model B
Model C

Fig.7 Model processing time. 
Model A – fixed size regular quadrilateral and free triangular
finite element meshes; 
Model B – adaptive mesh, regular quadrilateral and free 
triangular finite element meshes; 
Model C – adaptive regular finite element mesh. 
for ultrasonic wave propagation in solids:2D case, 
Ultragarsas, N2(30),7-10,(1998). 

Fig.8 presents the total displacement plot for a steel-
lexiglass model at the time instant 23 µs when the wave front 
eaches the steel-plexiglass contact line and enters the steel 
egion.  On the contact line wave diffraction and reflection is 
bserved. 

[7] Morse, P. And Feshbach, H., Methods of Theoretical 
Physics, Parts I&II, McGraw-Hill, New-York,(1953). 

[8] Zienkiewitcz, O.C., The Finite Element Method, IV 
edition, Volumes I&II, McGraw-Hill, London, (1989).  

[9] Bathe,K.J., Finite Element procedures in Finite Element 
Analysis, Prentice Hall, Englewood Cliffs, N.J.,(1987). 

[10] Katona, I. and Zienkiewitcz,O. C.,’A unified set of single 
step algorithms, Part 3: the beta-m method, a generalization 
of the Newmark’s scheme’, Int. J. Num. Meth. Eng., 21, 
1345-1359, (1985). 

[11] Pezeshk, S. and Camp, C.V., An explicit time integration 
technique for dynamic analyses, Int. J. Num. Meth. Eng., 
38, 2265-2281, (1995). 

 

Fig. 8 Displacement plot at the time 23 µs. 
Note: Displacements of the steel region are magnified 3 
times in order to be observables 

 

onclusions 

This paper is addressed to the problems of the finite element 
odelling of the transient ultrasonic pulse propagation. Due to 

equirements imposed on the space and time steps, the 
imensions of the finite element models become very large. The 
imulation algorithm was optimized by taking into account the 
ractical features of the ultrasonic measurement procedures. 
he simulation effectiveness has been improved by employing 

he computational strategy allowing to control the size of the 
ctive part of the model, filtrating the numerical noise and 
ombining the domains meshed by different space step sizes in 
he same model. The algorithm works with 2D and 
xisymmetric models. 


